Abstract

Contribution: Prior studies comparing the effectiveness of different laboratory learning modes do not allow one to draw a universally valid conclusion, as other influences are mixed with the learning modes. In order to contribute to the existing body of work and to add another piece to the puzzle, this article demonstrates an improved methodology to evaluate the effectiveness of computer-simulated laboratories in comparison to hands-on exercises using a battery basics practical course as a case study. Background: Computer-simulated experiments are becoming increasingly popular for conducting laboratory exercises in higher education and vocational training institutions. To ensure the consistent quality of laboratory learning, an accurate comparison between the results of simulated experiments and practical hands-on experiments is required. Intended Outcomes: In this article, the achievement of the following learning objectives were compared between the two laboratory modes: 1) comprehension of the most important parameters of battery cells and 2) knowledge on how these parameters can be determined using adequate experimental procedures. Application Design: To avoid interference of factors other than laboratory mode on the learning, laboratory instructions and experimental interfaces ensured identical execution of the experiments in the compared modes. Using a counterbalanced methodology, the two laboratory modes alternated by the session, while the experimental procedures remained constant regardless of the respective modes. Findings: Tests taken by the participants after conducting the laboratory experiments revealed that hands-on laboratories resulted in statistically significantly better student performance than simulated laboratories. This difference was even more pronounced for the participants that finished a vocational education and training program before the university studies.

Highlights

  • T O ACHIEVE an optimum student learning and to develop valuable skills for future employment, engineering courses often complement lectures and tutorials with laboratory classes [1]–[3]

  • Student test scores in each individual study run after hands-on exercises outperformed those after simulations, the differences in the individual study runs were not statistically significant

  • In several study runs in 2016/2017 that involved 129 engineering students, test results related to knowledge acquisition as a result of conducting laboratory exercises in different modes were collected

Read more

Summary

Introduction

T O ACHIEVE an optimum student learning and to develop valuable skills for future employment, engineering courses often complement lectures and tutorials with laboratory classes [1]–[3]. Hands-on laboratories are often replaced by computer-based learning through simulated experiments. To avoid a deterioration in learning quality, it is necessary to compare the effectiveness of simulated laboratory experiments with the effectiveness of hands-on laboratory experiments. To ensure the consistent quality of laboratory learning, an accurate comparison between the results of simulated experiments and practical hands-on experiments is required. Intended Outcomes: In this article, the achievement of the following learning objectives were compared between the two laboratory modes: 1) comprehension of the most important parameters of battery cells and 2) knowledge on how these parameters can be determined using adequate experimental procedures. Application Design: To avoid interference of factors other than laboratory mode on the learning, laboratory instructions and experimental interfaces ensured identical execution of the experiments in the compared modes. The two laboratory modes alternated by the session, while the experimental procedures remained constant regardless of the respective modes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.