Abstract

Teaching enables humans to impart vast stores of culturally specific knowledge and skills. However, little is known about the neural computations that guide teachers' decisions about what information to communicate. Participants (N = 28) played the role of teachers while being scanned using fMRI; their task was to select examples that would teach learners how to answer abstract multiple-choice questions. Participants' examples were best described by a model that selects evidence that maximizes the learner's belief in the correct answer. Consistent with this idea, participants' predictions about how well learners would do closely tracked the performance of an independent sample of learners (N = 140) who were tested on the examples they had provided. In addition, regions that play specialized roles in processing social information, namely the bilateral temporoparietal junction and middle and dorsal medial prefrontal cortex, tracked learners' posterior belief in the correct answer. Our results shed light on the computational and neural architectures that support our extraordinary abilities as teachers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.