Abstract

In the current study, magnetic oxide nanoparticle-impregnated tea waste (TW-Fe3O4) is employed as an adsorbent to remove phosphate ions (PO43−) from an aqueous solution. By utilizing a variety of analytical methods, the TW-Fe3O4 nano-adsorbent was characterized by FE-SEM, TEM, EDX, BET, FTIR and XRD. The FE-SEM of TW-Fe3O4 demonstrated the adsorbent’s granular morphology with a variety of magnetic nanoparticle sizes and shapes. The XRD of TW-Fe3O4 showed two diffraction peaks at 2θ values 30.9° and 35.4°, which are in correspondence with the diffraction pattern of magnetite. The synthesis of a TW-Fe3O4 adsorbent with a greater surface area and porosity was demonstrated by BET analysis. Numerous adsorption factors like initial concentration of PO43− ion, pH of the medium, contact time, temperature and adsorbent dose were optimized for phosphate removal. The maximum removal of 92% was achieved by using the adsorbent dose of 1.2 g at 323 K (pH 5). Pseudo-second-order and intra-particle diffusion models were fitted to the sorption kinetic, whereas adsorption isotherm data were found well fitted to Freundlich and Dubinin–Radushkevich (D-R) models. The highest adsorption capacity of TW-Fe3O4 towards phosphate ions was 226.8 mg/g, which is significantly higher than other reported bio-adsorbents. According to thermodynamic data, phosphate adsorption at the solid–liquid interface was of an endothermic and spontaneous nature and characterized by enhanced inevitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call