Abstract

Menopause is associated with changes in body composition (a decline in lean body mass and an increase in total fat mass), leading to an increased risk of metabolic syndrome, nonalcoholic fatty liver disease, and heart disease. A healthy diet to control body weight is an effective strategy for preventing and treating menopause-related metabolic syndromes. In the present study, we investigated the effect of long-term feeding of edible oils (soybean oil (SO), tea seed oil (TO), and lard oil (LO)) on female ovariectomized (OVX) mice. SO, TO, and LO comprise mainly polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), and saturated fatty acids (SFA), respectively. However, there have been quite limited studies to investigate the effects of different fatty acids (PUFA, MUFA, and SFA) on physiological adaption and metabolic homeostasis in a menopausal population. In this study, 7-week-old female Institute of Cancer Research (ICR) mice underwent either bilateral laparotomy (sham group, n = 8) or bilateral oophorectomy (OVX groups, n = 24). The OVX mice given a high-fat diet (HFD) were randomly divided into three groups: OVX+SO, OVX+TO, and OVX+LO. An HFD rich in SO, TO, or LO was given to the OVX mice for 12 weeks. Our findings revealed that the body weight and relative tissues of UFP (uterus fatty peripheral) and total fat (TF) were significantly decreased in the OVX+TO group compared with those in the OVX+SO and OVX+LO groups. However, no significant difference in body weight or in the relative tissues of UFP and TF was noted among the OVX+SO and OVX+LO groups. Furthermore, mice given an HFD rich in TO exhibited significantly decreased accumulation of liver lipid droplets and adipocyte sizes of UFP and brown adipose tissue (BAT) compared with those given an HFD rich in SO or LO. Moreover, replacing SO or LO with TO significantly increased oral glucose tolerance. Additionally, TO improved endurance performance and exhibited antifatigue activity by lowering ammonia, blood urea nitrogen, and creatine kinase levels. Thus, tea seed oil (TO) rich in MUFA could prevent obesity, reduce physical fatigue, and improve exercise performance compared with either SO (PUFA)- or LO(SFA)-rich diets in this HFD-induced obese OVX mice model.

Highlights

  • Menopause is usually associated with an increase in body weight and body fat accumulation in the waist region, leading to an increased risk of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), and heart disease [1,2,3,4]

  • After supplementation and high-fat diet induction (Figure 1), a significant difference was observed among groups (F(3, 28) = 8.956, p = 0.001, η2 = 0.576), and body weight gain was significantly higher in the OVX+soybean oil (SO) group than in the Sham+SO group (p < 0.05)

  • The relative tissue weights of the liver, heart, lung, muscle, and brown adipose tissue (BAT) mass were significantly elevated in the OVX+tea seed oil (TO) group, whereas the relative tissue weights of UPF and total fat (TF) were decreased compared

Read more

Summary

Introduction

Menopause is usually associated with an increase in body weight and body fat accumulation in the waist region, leading to an increased risk of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), and heart disease [1,2,3,4]. Rodents, mice with global ERα knockout, and mice lacking aromatase may undergo loss of estrogen signaling, thereby leading to an increase in liver fat [12,13,14,15,16]. Exogenous estrogen was demonstrated to prevent many menopause-related metabolic abnormalities; long-term hormone replacement therapy may increase the risk of breast cancer [17]. Lifestyle changes, including healthy diets and regular exercise to reduce body weight, are the strategies for preventing and treating menopause-related metabolic syndromes [18,19]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.