Abstract
Tea saponins (TS), a novel multifunctional stabilizer, were explored to stabilize the nanosuspensions. The purpose of this study was to investigate the effect of TS on the stability and redispersibility of nanosuspensions. In present work, hesperidin (HDN), a poorly soluble drug, was used as a model drug. HDN nanosuspensions (HDN-NS) with particle size of 250-270nm were prepared by high-speed shearing and high-pressure homogenization. The zeta potential of HDN-NS was -23.16±1.12mV. Compared with traditional stabilizers, TS were superior in stabilization efficiency at low concentrations. Nanosuspensions freeze-dried powder using TS and lactose as cryoprotectants had good redispersibility, and the average particle size was 266.5±9.0nm after reconstitution. TS and lactose can effectively prevent the irreversible agglomeration of HDN-NS during freeze-drying. The dissolution was enhanced owing to particle size reduction. Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) results showed that HDN nanocrystals were irregularly lumpy. The chemical structure and crystal state of HDN had not significantly changed during production. In conclusion, TS have the potential to stabilize and disperse nanosuspensions and provide a promising strategy for the development of poorly soluble drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.