Abstract
Obesity by high-fat diets (HFDs) is a chronic metabolic disorder that poses a significant threat to human health. Tea polyphenols (TPs) can prevent obesity caused by HFD by modulating gut microbiota. To explore the function of TP in mitigating the effects of obesity and inflammation, mice are fed HFDs either with or without TP. TP supplementation effectively attenuates HFD-induced weight gain, liver and adipose tissue accumulation, while also improving liver fat content as well as colon and ileum tissue morphology. TP supplementation leads to a downregulation of lipid accumulation genes and an upregulation of lipid-decomposition genes. Moreover, TP increases Blautia and Faecalibaculum while reducing the Colidextribacter and short-chain fatty acids in HFD-induced mice, significantly activates G protein-coupled receptors, inhibits histone deacetylases, enhances intestinal tight junction expression levels, reduces intestinal permeability, and thereby preserves intestinal barrier integrity. Additionally, TP markedly suppresses the expression of inflammatory cytokines and inhibits the activation of TLR4 signaling pathways. These findings suggest that TP holds great promise for improving both obesity management and alleviating intestinal inflammation, and provides a clue for understanding the antiobesity effects of TP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.