Abstract
The transverse electric (TE) polarization for shape reconstruction of perfect electric conducting 2-D targets is presented. The deformation velocity for the TE polarization case is implemented in the level-set algorithm. A comparison between the reconstruction CPU time between the TE and transverse magnetic (TM) polarizations is discussed. The numerical results show that retrieving the shape and location of multiple targets of arbitrary cross sections becomes computationally intensive when illumination with TE-polarized waves is used. If the orientation of the unknown cylinders is a priori known, the TM-polarized waves provide faster reconstruction results with the same accuracy compared with the TE-polarized waves. Upon corrupting the synthetic data with Gaussian noise up to signal-to-noise ratio of 5 dB, the TM polarization seems to provide more accurate results compared with the TE case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.