Abstract

Glutamate and glutamine are important neurochemicals in the central nervous system and the neurotoxic properties of excess glutamate have been associated with several neurodegenerative diseases. The TE-Averaged PRESS technique has been shown by our group to detect an unobstructed glutamate signal at 3 T that is resolved from glutamine and NAA at 2.35 ppm. TE-Averaged PRESS therefore provides an unambiguous measurement of glutamate as well as other metabolites such as NAA, choline, creatine, and myo-inositol. In this study, we extend the single voxel TE-Averaged PRESS technique for two-dimensional (2D) spectroscopic imaging (TE-Averaged MRSI) to generate 2D glutamate maps. To facilitate TE-Averaged MRSI within a reasonable time, a fast encoding trajectory was used. This enabled rapid acquisition of TE-Averaged spectral arrays with good spectral bandwidth (977 Hz) and resolution (∼2 Hz). MRSI data arrays of 10 × 16 were acquired with 1.8 cm 3 spatial resolution over a ∼110 cm 3 volume in a scan time of ∼21 min. Two-dimensional metabolite maps were obtained with good SNR and clear differentiation in glutamate levels was observed between gray and white matter with significantly higher glutamate in gray matter relative to white matter as anticipated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.