Abstract
Recently Baraglia showed how topological T-duality can be extended to apply not only to principal circle bundles, but also to non-principal circle bundles. We show that his results can also be recovered via two other methods: the homotopy-theoretic approach of Bunke and Schick, and the noncommutative geometry approach which we previously used for principal torus bundles. This work has several interesting byproducts, including a study of the K-theory of crossed products by Isom(R), the universal cover of O(2), and some interesting facts about equivariant K-theory for Z/2. In the final section of this paper, these results are extended to the case of bundles with singular fibers, or in other words, non-free O(2)-actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.