Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) can remove a wide variety of 3′ and 5′ terminal DNA adducts. Genetic studies in yeast identified TDP1 as a regulator of non-homologous end joining (NHEJ) fidelity in the repair of double-strand breaks (DSBs) lacking terminal adducts. In this communication, we show that TDP1 plays an important role in joining cohesive DSBs in human cells. To investigate the role of TDP1 in NHEJ in live human cells we used CRISPR/cas9 to produce TDP1-knockout (TDP1-KO) HEK-293 cells. As expected, human TDP1-KO cells were highly sensitive to topoisomerase poisons and ionizing radiation. Using a chromosomally-integrated NHEJ reporter substrate to compare end joining between wild type and TDP1-KO cells, we found that TDP1-KO cells have a 5-fold reduced ability to repair I-SceI-generated DSBs. Extracts prepared from TDP1-KO cells had reduced NHEJ activity in vitro, as compared to extracts from wild type cells. Analysis of end-joining junctions showed that TDP1 deficiency reduced end-joining fidelity, with a significant increase in insertion events, similar to previous observations in yeast. It has been reported that phosphorylation of TDP1 serine 81 (TDP1-S81) by ATM and DNA-PK stabilizes TDP1 and recruits TDP1 to sites of DNA damage. We found that end joining in TDP1-KO cells was partially restored by the non-phosphorylatable mutant TDP1-S81A, but not by the phosphomimetic TDP1-S81E. We previously reported that TDP1 physically interacted with XLF. In this study, we found that XLF binding by TDP1 was reduced 2-fold by the S81A mutation, and 10-fold by the S81E phosphomimetic mutation. Our results demonstrate a novel role for TDP1 in NHEJ in human cells. We hypothesize that TDP1 participation in human NHEJ is mediated by interaction with XLF, and that TDP1-XLF interactions and subsequent NHEJ events are regulated by phosphorylation of TDP1-S81.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.