Abstract
In high performance processors, the design of on-chip memory hierarchies is crucial for performance and energy efficiency. Current processors rely on large shared Non-Uniform Cache Architectures (NUCA) to improve performance and reduce data movement. Multiple solutions exploit information available at the microarchitecture level or in the operating system to optimize NUCA performance. However, existing methods have not taken advantage of the information captured by task dataflow programming models to guide the management of NUCA caches. In this paper we propose TD-NUCA, a hardware/software co-designed approach that leverages information present in the run-time system of task dataflow programming models to efficiently manage NUCA caches. TD-NUCA identifies the data access and reuse patterns of parallel applications in the runtime system and guides the operation of the NUCA caches in the hardware. As a result, TD-NUCA achieves a 1.18x average speedup over the baseline S-NUCA while requiring only 0.62x the data movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.