Abstract

The existence, formation and stability of solitons in a system of linearly coupled complex cubic Ginzburg-Landau (CGL) equations is studied in detail taking into account linear distributed gain, dispersive losses and Kerr nonlinearity in the doped component and linear losses in the passive one in a dual-core nonlinear fiber. Exact analytical chirped soliton solutions are derived and their propagation features and stability are investigated. Interaction of the soliton solutions and applications to TDM and WDM chirped soliton transmission are studied. The collision-induced delay of the interacting solitons in the WDM case is estimated as well. There is a strong evidence that, in both TDM and WDM cases, the chirped solitons are stabilized by the presence of the passive core. A possibility of generating stable chirped solitons out of unchirped ones is also demonstrated. The lumped version of this model could be the basis for a plausible optical transmission system with periodic amplification via a dual-core EDFA confined in the amplification hub.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call