Abstract

Antifuses are electronic devices that can be irreversibly converted from a high-resistance state to a low-resistance state. Thus, they are ideal candidates for one-time-programmable many-times-readable nonvolatile memories. In this paper, the reliability and the programming characteristics of Si-rich SiNx, antifuses have been studied using time-dependent dielectric breakdown and pulse-breakdown measurements on both single-device test structures and full read-only memories. Contrary to measurements on thick films in which the Poole-Frenkel barrier lowering dominates breakdown, these measurements on fully processed and integrated antifuses indicate that a Fowler-Nordheim-like mechanism governs both programming and long-term reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call