Abstract

Densely distributed sensor networks can revolutionize environmental observations by providing real-time data with an unprecedented spatiotemporal resolution. However, field deployments often pose unique challenges in terms of power provisions and wireless connectivity. We present a framework for wirelessly connected distributed sensor arrays for near-surface temperature and/or deformation monitoring. Our research focuses on a novel time division duplex implementation of the LoRa protocol, enabling battery powered base stations and avoiding collisions within the network. In order to minimize transmissions and improve battery life throughout the network, we propose a dedicated delta encoding algorithm that utilizes the spatial and temporal similarity in the acquired data sets. We implemented the developed technologies in a AA battery powered hardware platform that can be used as a wireless data logger or base station, and we conducted an assessment of the power consumption. Without data compression, the projected battery life for a data logger is 4.74 years, and a wireless base stations can last several weeks or months depending on the amount of network traffic. The delta encoding algorithm can further improve this battery life with a factor of up to 3.50. Our results demonstrate the viability of the proposed methods for low-power environmental wireless sensor networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.