Abstract

A parametric study of heat transfer and pressure drop associated with forced flow of deionized water over five micro pin fin heat sinks of different spacing, arrangements, and shapes was conducted experimentally. Nusselt numbers and friction factors were obtained over Reynolds numbers ranging from 14 to 720. The thermal and hydraulic results were obtained to evaluate and compare the heat sinks performances at fixed mass flow rate, fixed pressure drop, and fixed pumping power. Two distinct regions of the Nusselt number dependency on the Reynolds number separated by a critical Reynolds number have been identified for unstreamlined pin fin devices while the streamlined device showed no slope change. The effects of spacing, shape of pin fins, and arrangement on friction factor and heat transfer were in agreement with existing literature. The results indicate that utilizing streamlined pin fin heat sinks can significantly enhance the thermal-hydraulic performance of the heat sink, but only at moderate Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call