Abstract
Recent demands on affordable, portable wireless communication and computation devices have resulted in exponential growth of wireless networks ranging from Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWAN) to Ad-Hoc and Sensor networks. The major goal of wireless communication is to allow users to communicate together and to have access to global network anytime anywhere. This has led to wide acceptance of infrastructure based cellular networks (WWANs) where mobile stations communicate with a centralized controller, often referred as Access Point (AP) that is connected to the wired networks. On the other hand, WLANs have appeared as dominant popular technologies in many venues including a local area such as an academic campus or an airport terminal. These wireless networks mostly rely on IEEE 802.11 Wi-Fi (Wireless Fidelity) technology and its various derived versions (i.e. 802.11a,b,g). IEEE 802.11 standard supports two operational modes: The infrastructure-based Wireless Local Area Networks (WLANs) and an infrastructure-less Ad-Hoc Networks. A WLAN (Conti, 2003) typically imposes the existence of an AP and normally is connected to the wired networks to provide internet access for mobile devices. Obviously, only one hop link is needed to communicate between mobile devices and AP. In contrast, there is no AP or infrastructure in Ad-Hoc networks. Any two stations can communicate directly when they are in the range of reception of each other. To this end, the stations may use multi-hop routing to deliver their packets to destinations. The ad-hoc protocols (Conti, 2003; Mohapatra & Krishnamurthy, 2005) are self-configured for address and routing in the face of mobility and the network topology may change in each configuration. The multi-hop wireless ad-hoc networks, or multi-hop wireless networks enable wireless networking in the environments where the wired or cellular connections are impossible, inadequate, or cost effective (e.g. battle field, disaster recovery, etc.). The popularity of internet over the last decades has resulted in rapid advancement of demanding applications. The Transmission Control Protocol/Internet Protocol (TCP/IP) (Stevens, 1994) is a well-known de facto protocol in developing today’s internet. Basically, TCP provides a connection-oriented and reliable end-to-end data delivery between two hosts in traditional wired networks. Since TCP is well tuned and due to its wide acceptance in internet, it is desirable to extend and adopt its functionality to wireless networks. On the
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.