Abstract

This paper presents an innovative solution to model distributed adaptive systems in biomedical environments. We present an original TCBR-HMM (Text Case Based Reasoning-Hidden Markov Model) for biomedical text classification based on document content. The main goal is to propose a more effective classifier than current methods in this environment where the model needs to be adapted to new documents in an iterative learning frame. To demonstrate its achievement, we include a set of experiments, which have been performed on OSHUMED corpus. Our classifier is compared with Naive Bayes and SVM techniques, commonly used in text classification tasks. The results suggest that the TCBR-HMM Model is indeed more suitable for document classification. The model is empirically and statistically comparable to the SVM classifier and outperforms it in terms of time efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.