Abstract

The most relevant transport features of doped diamond-like carbon (DLC) films have been implemented in a TCAD setup to provide a theoretical tool to assess the reliability expectations for high-voltage device passivation. Starting from the band structure and boundary conditions of a metal-insulator-semiconductor (MIS) device, trap states in the bandgap have been used to determine the characteristics of differently doped DLC layers against experiments. The role of the DLC as a passivation layer on top of the bevel termination of a high-voltage diode has been studied and compared with experiments. The breakdown voltage is significantly influenced by the properties of the DLC as clearly explained by the TCAD simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call