Abstract

The fabrication technology of extra‐functionality CMOS devices involves process steps which lead to high damage in the silicon lattice. Amorphizing implants and simultaneous reduction of thermal budgets to gain better control of the formation of ultra‐shallow junctions render the presence of extended defects in active regions unavoidable. In particular, dislocation loops (DLs) have proven to be stable under thermal treatment. To better understand the electrical properties of DLs and their impact on the leakage current we developed an analytical tool to extract defect parameters from measured Deep Level Transient Spectroscopy (DLTS) signals and capacitance transients. Commercial process and device simulators are used to test the plausibility of applied defect models and the basic assumptions about the electrical activity of DLs.Simulation of DLTS peak broadening caused by the broadening of a defect level distribution in the band gap of silicon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.