Abstract

AbstractThe interaction of a relativistic short laser pulse with thin foil is studied using 3D PIC simulations in the context of optimized high-energy proton generation for nuclear medicine and pharmacy. As an example, we analyze the Tc-99m yield from the Mo-100(p,2n)Tc-99m reaction with the International Coherent Amplification Network (ICAN) concept defined by a 10 J pulse energy and 10 kHz repetition rate. Based on 3D PIC simulation it has been demonstrated that normally incident 100 fs laser pulse with maximum intensity of 5 × 1021 W/cm2 is able to generate 1011 protons with energy upto 45 MeV from thin semi-transparent CH2 target. Such laser-produced proton beam after 6 hours bombardment of the thick metallic Mo-100 target gives around 300 Gbq activities of Tc-99m isotope. This gives reason to believe that laser technology for producing technetium is possible with ICAN concept to replace the traditional scheme through the fission of weapons-grade uranium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call