Abstract

Anaplastic thyroid carcinoma (ATC) is a nearly chemo-resistant malignancy with high invasion and mortality. Long non-coding RNAs (lncRNAs) have been demonstrated to be dysregulated and play a crucial role in the development and process of ATC. The present study aimed to explore the mechanism of PVT1 dysregulation in ATC. The mRNA levels of PVT1 and T-box3 (TBX3), and the protein levels of TBX3 in ATC and paracancerous tissues, and FRO and Nthy-ori 3-1 cells were determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blot, respectively. The transcriptional factor binding site was predicted and validated between TBX3 and PVT1 promoter through the JASPAR website, and ChIP and luciferase analysis. The proliferation, migration, and invasion of FRO cells were assessed by MTT, colony formation, and transwell assays. PVT1 expression was upregulated in ATC, which was positively correlative with the level of transcription factor TBX3. Downregulation of PVT1 inhibited the proliferation, migration, and invasion of FRO cells. Moreover, TBX3 targeting the promoter region of PVT1 promoted the expression level of PVT1 and modulated the downstream signalling axis of PVT1, miR-30a/LOX. Also, interference of PVT1 reversed the stimulative role of overexpression of TBX3 in the progress of FRO cells. TBX3 enhanced proliferation, migration, and invasion of ATC cells via activation of PVT1 and modulation of the miR-30a/LOX signalling axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.