Abstract

As a transcription factor mainly expressed in cardiovascular system, T-box 20 (Tbx20) plays an important role in embryonic cardiovascular system development and adult heart function. Here, we determined the mechanism by which Tbx20 regulates cardiomyocyte apoptosis and cardiomyopathies. We analyzed Tbx20 expression levels and apoptosis rates in normal and heart failure human autopsy heart samples. Female C57BL/6 mice were ovariectomized and treated with 17β-estradiol to determine Tbx20 expression levels. ROS production, TUNEL, DNA laddering, qRT-PCR, Western blot, immunohistochemistry and ChIP analyses were performed on male C57BL/6 transverse aortic constriction-induced heart failure samples and on neonatal rat ventricular myocytes that were treated with H2O2 to investigate the role of Tbx20 in estrogen-mediated heart protection. Tbx20 expression was down regulated during heart failure, accompanied by elevated cardiomyocyte apoptotic levels in humans and mice. H2O2 led to a concurrent decrease in Tbx20 expression and increase in apoptosis in cultured neonatal rat cardiomyocytes. Tbx20 overexpression reduced H2O2-induced cardiomyocyte apoptosis and was associated with a profound inhibition of p38MAPK, Bax and caspase3 and the activation of Bcl-2. Estrogen was able to protect cardiomyocytes from H2O2-induced apoptosis by upregulating Tbx20 expression in a concentration-dependent manner. Tbx20 silencing increased oxidative stress-induced apoptosis in H9c2 cells. Moreover, Tbx20 directly regulated Esrra expression to enhance the heart-protective effect of estrogen. These results indicate that Tbx20 functions as an important regulator of estrogen-mediated cardiomyocyte protection during oxidative stress, suggesting that estorgen-Tbx20-ERR-α may represent a crucial regulatory cascade and a potential therapeutic target for heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call