Abstract

Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung development. We show that lungs of Tbx2-deficient mice are markedly hypoplastic and exhibit reduced branching morphogenesis. Mesenchymal proliferation was severely decreased, while mesenchymal differentiation into fibrocytes was prematurely induced. In the epithelial compartment, proliferation was reduced and differentiation of alveolar epithelial cells type 1 was compromised. Prior to the observed cellular changes, canonical Wnt signaling was downregulated, and Cdkn1a (p21) and Cdkn1b (p27) (two members of the Cip/Kip family of cell cycle inhibitors) were strongly induced in the Tbx2-deficient lung mesenchyme. Deletion of both Cdkn1a and Cdkn1b rescued, to a large degree, the growth deficits of Tbx2-deficient lungs. Prolongation of Tbx2 expression into adulthood led to hyperproliferation and maintenance of mesenchymal progenitor cells, with branching morphogenesis remaining unaffected. Expression of Cdkn1a and Cdkn1b was ablated from the lung mesenchyme in this gain-of-function setting. We further show by ChIP experiments that Tbx2 directly binds to Cdkn1a and Cdkn1b loci in vivo, defining these two genes as direct targets of Tbx2 repressive activity in the lung mesenchyme. We conclude that Tbx2-mediated regulation of Cdkn1a and Cdkn1b represents a crucial node in the network integrating patterning information and cell cycle regulation that underlies growth, differentiation, and branching morphogenesis of this organ.

Highlights

  • The development of organs and organisms depends on the precise control of the progression through and the exit from the cell cycle to achieve appropriate patterns of proliferation and differentiation in time and space

  • Combining genetic loss- and gain-of-function approaches, we show that the T-box transcription factor gene Tbx2 is required and sufficient to direct appropriate lung growth by maintaining proliferation and inhibiting differentiation in the mesenchymal compartment of the lung

  • We found that expression of the cell cycle inhibitor genes Cdkn1a (p21) and Cdkn1b (p27) inversely correlates with expression of Tbx2 and that deletion of both genes rescues, to a large degree, the growth deficits of Tbx2mutant lungs

Read more

Summary

Introduction

The development of organs and organisms depends on the precise control of the progression through and the exit from the cell cycle to achieve appropriate patterns of proliferation and differentiation in time and space. CDK function is controlled by a variety of mechanisms, including a group of molecules that inhibits CDK activity by complex formation. In contrast to the obvious relevance of CKIs in tissue homeostasis, their role in development of tissues and organs, and the transcriptional mechanisms that mediate their precise temporal and spatial expression in the embryo have been much less well defined. This may relate to functional redundancy between family members as well as to the complexity of their regulatory modules (for reviews on CKIs see [1,2,3])

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.