Abstract

A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco's modified Eagle's medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call