Abstract

In recent years, encoder-decoder-based network structures have been widely used in designing medical image segmentation models. However, these methods still face some limitations: 1) The network's feature extraction capability is limited, primarily due to insufficient attention to the encoder, resulting in a failure to extract rich and effective features. 2) Unidirectional stepwise decoding of smaller-sized feature maps restricts segmentation performance. To address the above limitations, we propose an innovative Tree-like Branch Encoder Network (TBE-Net), which adopts a tree-like branch encoder to better perform feature extraction and preserve feature information. Additionally, we introduce the Depth and Width Expansion (D-WE) module to expand the network depth and width at low parameter cost, thereby enhancing network performance. Furthermore, we design a Deep Aggregation Module (DAM) to better aggregate and process encoder features. Subsequently, we directly decode the aggregated features to generate the segmentation map. The experimental results show that, compared to other advanced algorithms, our method, with the lowest parameter cost, achieved improvements in the IoU metric on the TNBC, PH2, CHASE-DB1, STARE, and COVID-19-CT-Seg datasets by 1.6%, 0.46%, 0.81%, 1.96%, and 0.86%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.