Abstract

BackgroundClear cell renal cell carcinoma (ccRCC) is known for abnormal lipid metabolism and widespread activation of HIF-2α. Recently, the importance of autophagy in ccRCC has been focused, and it has potential connections with HIF-2α and lipid metabolism. However, the specific regulatory mechanism between HIF-2α, autophagy, and lipid metabolism in ccRCC is still unclear.MethodsIn this study, Bioinformatics Analysis and Sequencing of the whole transcriptome were used to screen our target. The expression of TBC1D5 in renal clear cell carcinoma was confirmed by database analysis, immunohistochemistry, PCR and Western blot. The effects of TBC1D5 on tumor cell growth, migration, invasion and lipid metabolism were examined by CCK8, Transwell and oil red staining, and the mechanism of TBC1D5 on autophagy was investigated by Western blot, fluorescence microscopy and electron microscopy. Chloroquine and rapamycin were used to verified the key role of autophagy in effects of TBC1D5 on tumor cell. The regulatory mechanism of TBC1D5 in renal clear cell carcinoma (RCC) was investigated by shhif-2α, shTBC1D5, mimic, inhibitor, ChIP and Luciferase experiments. The animal model of ccRCC was used to evaluate the biological function of TBC1D5 in vivo.ResultsIn this study, TBC1D5 was found to be an important bridge between autophagy and HIF-2α. Specifically, TBC1D5 is significantly underexpressed in ccRCC, serving as a tumor suppressor which inhibits tumor progression and lipid accumulation, and is negatively regulated by HIF-2α. Further research has found that TBC1D5 regulates the autophagy pathway to reverse the biological function of HIF-2α in ccRCC. Mechanism studies have shown that HIF-2α regulates TBC1D5 through hsa-miR-7-5p in ccRCC, thereby affecting tumor progression and lipid metabolism through autophagy.ConclusionsOur research reveals a completely new pathway, HIF-2α/hsa-miR-7-5p/TBC1D5 pathway affects ccRCC progression and lipid metabolism by regulating autophagy.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.