Abstract

ObjectiveMitochondria are essential for myocardial ischemia/reperfusion (I/R) injury. TBC domain family member 15 (TBC1D15) participates in the regulation of mitochondrial homeostasis although its role remains elusive in I/R injury. Methods and materialsThis study examined the role of TBC1D15 in mitochondrial homeostasis under myocardial I/R injury using inducible cardiac-specific TBC1D15 knockin (TBC1D15CKI) and knockout (TBC1D15CKO) mice. ResultsTBC1D15 mRNA/protein levels were downregulated in human ischemic cardiomyopathy samples, mouse I/R hearts and neonatal mouse cardiomyocytes with H/R injury, consistent with scRNA sequencing finding from patients with coronary heart disease. Cardiac-specific knockin of TBC1D15 attenuated whereas cardiac-specific knockout of TBC1D15 overtly aggravated I/R-induced cardiomyocyte apoptosis and cardiac dysfunction. TBC1D15CKI mice exhibited reduced mitochondrial damage and mitochondrial fragmentation following myocardial I/R injury, while TBC1D15CKO mice displayed opposite results. TBC1D15 preserved mitochondrial function evidenced by safeguarding MMP and oxygen consumption capacity, antagonizing ROS accumulation and cytochrome C release, which were nullified by TBC1D15 knockdown. Time-lapse confocal microscopy revealed that TBC1D15 activated asymmetrical mitochondrial fission through promoting mitochondria-lysosome contacts untethering in NMCMs under H/R injury, whereas overexpression of TBC1D15 mutants (R400K and ∆231–240) failed to regulate asymmetrical fission and knockdown of TBC1D15 slowed down asymmetrical fission. Moreover, TBC1D15-offered benefits were mitigated by knockdown of Fis1 and Drp1. Mechanistically, TBC1D15 recruited Drp1 to mitochondria-lysosome contact sites via direct interaction with Drp1 through its C terminus (574–624) domain. Interfering with interaction between TBC1D15 and Drp1 abrogated asymmetrical mitochondrial fission and mitochondrial function. Cardiac phenotypes of TBC1D15CKO mice upon I/R injury were rescued by adenovirus-mediated overexpression of wild-type but not mutants (R400K, ∆231–240 and ∆574–624) TBC1D15. ConclusionsTBC1D15 ameliorated I/R injury through a novel modality to preserve mitochondrial homeostasis where mitochondria-lysosome contacts (through the TBC1D15/Fis1/RAB7 cascade) regulate asymmetrical mitochondrial fission (TBC1D15/Drp1 interaction), suggesting promises of targeting TBC1D15 in the management of myocardial I/R injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call