Abstract
Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography–tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594–624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594–624, deletion of segment 594–624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.