Abstract
In the present work, we report an ab initio investigation of the structural, electronic and linear optical properties of (Na0.5Bi0.5)TiO3 (NBT) in its rhombohedral phase, using a Full Potential Augmented Plane Waves (FP-LAPW) method in the frame work of Density Functional Theory (DFT) with the TB-mBJ potential for a better description of the electronic properties. Firstly a Full structure optimization was performed with a relaxation of atomics positions to minimize the Hellmann-Feynman forces exerted over the atoms. The calculated lattice parameters of the rhombohedral phase of NBT are in very good agreement with experimental values with a deviation of 0.9%. The electronic density of states are presented and commented. The calculated band structure shows that our compound has an indirect band gap of 3.30eV. Furthermore, the optical properties were presented, compared with experimental ones present in the literature and commented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.