Abstract

The luminescence properties of Tb 3+ and Eu 3+ dissolved in ionic liquids are studied. Solutes in this study include simple lanthanide compounds (e.g., EuBr 3, TbCl 3) and lanthanide complexes (e.g., Eu(dpa) 3 3− where dpa = 2,6 pyridine dicarboxylate dianion) dissolved in a 1-butyl-3-methylimidazolium bromide(BMIBr)/water mixture. Emission, excitation, and time-resolved emission measurements are utilized to characterize the spectroscopic properties. It is well established in the literature that the solubility and spectroscopic properties of lanthanides in ionic liquids are highly dependent upon environmental factors including purity, and water content [K. Binnemans, Chemical Reviews (2007); I. Billard, S. Mekki, C. Gaillard, P. Hesemann, C. Mariet, G. Moutiers, A. Labet, J.-C.G. Bünzli, European Journal of Inorganic Chemistry 6 (2004) 1190–1197; S. Samikkanu, K. Mellem, M. Berry, P.S. May, Inorganic Chemistry 46 (2007) 7121–7128]. The water in this ionic liquid system acts as a co-solvent to facilitate solubility of Tb 3+ and Eu 3+ compounds. The observed spectroscopic properties of Eu 3+ and Tb 3+ salts are expectedly impacted by the high water content, but unexpectedly impacted by the BMIBr ionic liquid. However, the spectroscopy of Eu(dpa) 3 3− is unaffected by the presence of BMIBr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.