Abstract
Let the function β be strictly increasing and continuous on an interval I ⊂ ℝ. The β-difference operator is defined by Dβ f (t) = (f(β(t)) − f(t)/(β(t) – t), where t ≠ β(t), and Dβ f (t) = f′ t(t) when t = s 0 is a fixed point of the function β. This quantum operator is a generalization of q-Jackson, Hahn, power and other quantum operators. As a convenience of the β-function: β(t) turns into the probability distribution function with the probability measure 1, and the sample space ℝ, in the case of its conditions are relaxed to be increasing and continuous from the right, that is, lim t →∞ β(t) = 1 and lim t →∞ β(t) = 0, and also by using the Lebesgue-Stieltjes measure of the interval [a, b] to be β(b) − β(a). In this paper, we investigate a β-Taylor’s formula associated with the operator Dβ when the function β has a unique fixed point s 0 ∈ I, which may allow for more flexible and accurate approximations of functions. An estimation of its remainder is given. Additionally, the β-power series is defined. Furthermore, as application, the β-expansion form of some fundamental functions is introduced. Finally, we find the unique solution of the β-shifting problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.