Abstract
The present article discusses the solute transport process in steady laminar blood flow through a non-Darcy porous medium, as a model for drug movement in blood vessels containing deposits. The Darcy–Brinkman–Forchheimer drag force formulation is adopted to mimic a sparsely packed porous domain, and the vessel is approximated as an impermeable cylindrical conduit. The conservation equations are implemented in an axisymmetric system (R, Z) with suitable boundary conditions, assuming constant tortuosity and porosity of the medium. Newtonian flow is assumed, which is physically realistic for large vessels at high shear rates. The velocity field is expanded asymptotically, and the concentration field decomposed. Advection and dispersion coefficient expressions are rigorously derived. Extensive visualization of the influence of effective Péclet number, Forchheimer number, reaction parameter on velocity, asymptotic dispersion coefficient, mean concentration, and transverse concentration at different axial locations and times is provided. Increasing reaction parameter and Forchheimer number both decrease the dispersion coefficient, although the latter exhibits a linear decay. The maximum mean concentration is enhanced with greater Forchheimer numbers, although the centre of the solute cloud is displaced in the backward direction. Peak mean concentration is suppressed with the reaction parameter, although the centroid of the solute cloud remains unchanged. Peak mean concentration deteriorates over time since the dispersion process is largely controlled by diffusion at the large time, and therefore the breakthrough curve is more dispersed. A similar trend is computed with increasing Péclet number (large Péclet numbers imply diffusion-controlled transport). The computations provide some insight into a drug (pharmacological agents) reacting linearly with blood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.