Abstract
Speech recognition is a rapidly emerging research area as the speech signal contains linguistic information and speaker information that can be used in applications including surveillance, authentication, and forensic field. The performance of speech recognition systems degrades expeditiously nowadays due to channel degradations, mismatches, and noise. To provide better performance of speech recognition, the Taylor-Deep Belief Network (Taylor-DBN) classifier is proposed, which is the modification of the Gradient Descent (GD) algorithm with Taylor series in the existing DBN classifier. Initially, the noise present in the speech signal is removed through the speech signal enhancement. The features, such as Holoentropy with the eXtended Linear Prediction using autocorrelation Snapshot (HXLPS), spectral kurtosis, and spectral skewness, are extracted from the enhanced speech signal, which is fed to the Taylor-DBN classifier that identifies the speech of the impaired persons. The experimentation is done using the TensorFlow speech recognition database, the real database, and the ESC-50 dataset. The accuracy, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Mean Square Error (MSE) of the Taylor-DBN for TensorFlow speech recognition database are 96.95%, 3.04%, 3.04%, and 0.045, respectively, and for real database, the accuracy, FAR, FRR, and MSE are 96.67%, 3.32%, 3.32%, and 0.0499, respectively. Similarly, for the ESC-50 dataset, the accuracy, FAR, FRR, and MSE are 96.81%, 3.18%, 3.18%, and 0.047, respectively. The results imply that the Taylor-DBN provides better performance as compared to the existing conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.