Abstract

In this study, a numerical approach is proposed to obtain approximate solutions of the system of nonlinear delay differential equations defining Lotka–Volterra prey–predator model. By using the Taylor polynomials and collocation points, this method transforms the population model into a matrix equation. The matrix equation corresponds to a system of nonlinear equations with the unknown Taylor coefficients. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results. All numerical computations have been performed on the computer algebraic system Maple 15.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.