Abstract

For a class of fractals that includes the familiar Sierpinski gasket, there is now a theory involving Laplacians, Dirichlet forms, normal derivatives, Green's functions, and the Gauss–Green integration formula, analogous to the theory of analysis on manifolds. This theory was originally developed as a by-product of the construction of stochastic processes analogous to Brownian motion, but has been given by a direct analytic construction in the work of Kigami. Until now, this theory has not provided anything analogous to the gradient of a function, or a local Taylor approximation. In this paper we construct a family of derivatives, which includes the known normal derivative, at vertex points in the graphs that approximate the fractal, and obtain Taylor approximations at these points. We show that a function in the domain of Δn can be locally well approximated by an n-harmonic function (solution of Δnu=0). One novel feature of this result is that it requires several different estimates to describe the optimal rate of approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.