Abstract
Study of scattering process in the nonlocal interaction framework leads to an integro-differential equation. The purpose of the present work is to develop an efficient approach to solve this integro-differential equation with high degree of precision. The method developed here employs Taylor approximation for the radial wave function which converts the integro-differential equation in to a readily solvable second-order homogeneous differential equation. This scheme is found to be computationally efficient by a factor of 10 when compared to the iterative scheme developed in J.~Phys.~G~Nucl.~Part.~Phys.~{\bf 45},~015106~(2018). The calculated observables for neutron scattering off $^{24}$Mg, $^{40}$Ca, $^{100}$Mo and $^{208}$Pb with energies up to 10 MeV are found to be within at most 8$\%$ of those obtained with the iterative scheme. Further, we propose an improvement over the Taylor scheme that brings the observables so close to the results obtained by iterative scheme that they are visually indistinguishable. This is achieved without any appreciable change in the run time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.