Abstract

A polycyclic aromatic hydrocarbon (PAH)-degrading bacterial strain Spyr1 was isolated from Greek creosote polluted soil by an enrichment method using pyrene as sole carbon and energy source. Spyr1 was identified as Mycobacterium sp. based on 16S rDNA analysis and it was capable of degrading pyrene, fluoranthene, fluorene, anthracene, and acenaphthene. The effect of entrapment in glass beads and alginate/starch mixtures on the survival and pyrene degradation ability of Spyr1 cells in liquid suspensions and soil microcosms was tested and compared with that of freely suspended cells. In general, free cells showed higher degradation of pyrene and other PAH than immobilized cells. However, immobilized cells could better tolerate PAH and they maintained their viability and PAH degradation capability for at least 1 year after storage at 4 degrees C. Entrapped cells in glass beads exhibited better pyrene biodegradation performance than alginate/starch entrapped cells in liquid suspensions and could be used effectively for at least ten repeated cycles. Alginate/starch entrapped cells exhibited better yields than glass beads entrapped cells for removing pyrene as well as mixtures of PAH in soil microcosms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.