Abstract
The taxonomic assignment of uncultured prokaryotes to known taxa is a major challenge in microbial systematics. This relies usually on the phylogenetic analysis of the ribosomal small subunit RNA or a few housekeeping genes. Recent works have disclosed ribosomal proteins as valuable markers for systematics and, due to the boom in complete genome sequencing, their use has become widespread. Yet, in the case of uncultured strains, for which complete genome sequences cannot be easily obtained, sequencing many markers is complicated and time consuming. Taking the advantage of the organization of ribosomal protein coding genes in large gene clusters, we amplified a 32 kb conserved region encompassing the spectinomycin (spc) operon using long range PCR from isolated and from uncultured nodular endophytic Frankia strains. The phylogenetic analysis of the 27 ribosomal protein genes contained in this region provided a robust phylogenetic tree consistent with phylogenies based on larger set of markers, indicating that this subset of ribosomal proteins contains enough phylogenetic signal to address systematic issues. This work shows that using long range PCR could break down the barrier preventing the use of ribosomal proteins as phylogenetic markers when complete genome sequences cannot be easily obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.