Abstract

BackgroundEndophytes are microbes that colonize plant internal tissues without causing disease. In particular, seed-associated endophytes may be vectors for founder microbes that establish the plant microbiome, which may subsequently contribute beneficial functions to their host plants including nutrient acquisition and promotion of plant growth. The Cucurbitaceae family of gourds (e.g., cucumbers, melons, pumpkin, squash), including its fruits and seeds, is widely consumed by humans. However, there is limited data concerning the taxonomy and functions of seed-associated endophytes across the Cucurbitaceae family. Here, bacteria from surface-sterilized seeds of 21 curcurbit varieties belonging to seven economically important species were cultured, classified using 16S rRNA gene sequencing, and subjected to eight in vitro functional tests.ResultsIn total, 169 unique seed-associated bacterial strains were cultured from selected cucurbit seeds. Interestingly, nearly all strains belonged to only two phyla (Firmicutes, Proteobacteria) and only one class within each phyla (Bacilli, γ-proteobacteria, respectively). Bacillus constituted 50 % of all strains and spanned all tested cucurbit species. Paenibacillus was the next most common genus, while strains of Enterobacteriaceae and lactic acid bacteria were also cultured. Phylogenetic trees showed limited taxonomic clustering of strains by host species. Surprisingly, 33 % of strains produced the plant hormone, indole-3-acetic acid (auxin), known to stimulate the growth of fruits/gourds and nutrient-acquiring roots. The next most common nutrient acquisition traits in vitro were (in rank order): nitrogen fixation/N-scavenging, phosphate solubilisation, siderophore secretion, and production of ACC deaminase. Secretion of extracellular enzymes required for nutrient acquisition, endophyte colonization and/or community establishment were observed. Bacillus strains had the potential to contribute all tested functional traits to their hosts.ConclusionThe seeds of economically important cucurbits tested in this study have a culturable core microbiota consisting of Bacillus species with potential to contribute diverse nutrient acquisition and growth promotion activities to their hosts. These microbes may lead to novel seed inoculants to assist sustainable food production. Given that cucurbit seeds are consumed by traditional societies as a source of tryptophan, the precursor for auxin, we discuss the possibility that human selection inadvertently facilitated auxin-mediated increases in gourd size.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0743-2) contains supplementary material, which is available to authorized users.

Highlights

  • Endophytes are microbes that colonize plant internal tissues without causing disease

  • The phylogenetic composition of cultivated cucurbit seed-microbiota showed two significant findings: First, the cultured strains were predicted to belong to 15 bacterial genera within three phyla (Firmicutes, Proteobacteria and Actinobacteria) and within each phyla, all microbes belonged to one class/order only (Fig. 3a, Additional file 2: Figure S1)

  • The Bacilli class predominated across the five tested cucurbit genera, belonging to six different families (Bacillaceae, Paenibacillaceae, Streptococcaceae, Lactobacillaceae, Leuconostocaceae and Staphylococcaceae) (Figs. 3, 4b)

Read more

Summary

Introduction

Endophytes are microbes that colonize plant internal tissues without causing disease. Seed-associated endophytes may be vectors for founder microbes that establish the plant microbiome, which may subsequently contribute beneficial functions to their host plants including nutrient acquisition and promotion of plant growth. Plants as metaorganisms are associated with diverse microbes spanning different niches (such as rhizosphere, phyllosphere and endosphere), located within or on vegetative organs (such as roots, stems and leaves) and reproductive organs (such as flowers, fruits and seeds) of the host plant [1,2,3,4]. The hologenome theory of evolution postulates that the host and its associated beneficial microbiota coevolve as one unit to provide benefits to one another including nutrient acquisition, growth promotion and defense [10]. Microbes can degrade the precursor of ethylene (ACC) via the enzyme, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, resulting in stimulation of plant growth, especially roots [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call