Abstract

A theory of macroecology based on the maximum information entropy (MaxEnt) inference procedure predicts that the log-log slope of the species-area relationship (SAR) at any spatial scale is a specified function of the ratio of abundance, N(A), to species richness, S(A), at that scale. The theory thus predicts, in generally good agreement with observation, that all SARs collapse onto a specified universal curve when local slope, z(A), is plotted against N(A)/S(A). A recent publication, however, argues that if it is assumed that patterns in macroecology are independent of the taxonomic choices that define assemblages of species, then this principle of "taxon invariance" precludes the MaxEnt-predicted universality of the SAR. By distinguishing two dimensions of the notion of taxon invariance, we show that while the MaxEnt-based theory predicts universality regardless of the taxonomic choices that define an assemblage of species, the biological characteristics of assemblages should under MaxEnt, and do in reality, influence the realism of the predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.