Abstract

Statistical analyses investigating latent structure can be divided into those that estimate structural model parameters and those that detect the structural model type. The most basic distinction among structure types is between categorical (discrete) and dimensional (continuous) models. It is a common, and potentially misleading, practice to apply some method for estimating a latent structural model such as factor analysis without first verifying that the latent structure type assumed by that method applies to the data. The taxometric method was developed specifically to distinguish between dimensional and 2-class models. This study evaluated the taxometric method as a means of identifying categorical structures in general. We assessed the ability of the taxometric method to distinguish between dimensional (1-class) and categorical (2-5 classes) latent structures and to estimate the number of classes in categorical datasets. Based on 50,000 Monte Carlo datasets (10,000 per structure type), and using the comparison curve fit index averaged across 3 taxometric procedures (Mean Above Minus Below A Cut, Maximum Covariance, and Latent Mode Factor Analysis) as the criterion for latent structure, the taxometric method was found superior to finite mixture modeling for distinguishing between dimensional and categorical models. A multistep iterative process of applying taxometric procedures to the data often failed to identify the number of classes in the categorical datasets accurately, however. It is concluded that the taxometric method may be an effective approach to distinguishing between dimensional and categorical structure but that other latent modeling procedures may be more effective for specifying the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.