Abstract

To solve the taxiing control problem of the full-wing solar-powered unmanned aerial vehicle (UAV) without front wheel steering servo and rudder, a control approach using differential propeller thrust to control the taxiing is proposed in this paper. Firstly, the taxiing mathematical models of two kinds of full-wing solar-powered UAVs with the front wheels turning freely or fixed are established. Meanwhile, the taxiing characteristics of full-wing solar-powered UAV in different taxiing speeds are analyzed. Secondly, based on the linear active disturbance rejection control (LADRC) theory, a yaw angle controller is designed by using differential propeller thrust as the control output. Finally, a straight line trajectory tracking scheme which is suitable for take-off and landing taxiing is designed on the base of improved vector field theory. Simulation results show that the designed controller has a good control effect on full-wing solar-powered UAV's take-off and landing taxiing periods, and better robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.