Abstract
By establishing an in vitro model of D-Gal-induced brain neuronal cell (HT-22) senescence, it was found that TAX treatment significantly increased the activities of SOD and GSH, while decreasing MDA levels in aging HT-22 cells, indicating that TAX effectively restored the total antioxidant capacity and antioxidant enzyme activity of aging HT-22 cells induced by D-Gal, and attenuated cellular oxidative stress injury. In addition, taxifolin could also protect HT-22 cells from aging by up-regulating SIRT1 while reducing the expression of Ac-p53, indicating that TAX may be an active substance that can effectively delay cell aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.