Abstract

BackgroundIn high-throughput sequencing studies, sequencing depth, which quantifies the total number of reads, varies across samples. Unequal sequencing depth can obscure true biological signals of interest and prevent direct comparisons between samples. To remove variability due to differential sequencing depth, taxa counts are usually normalized before downstream analysis. However, most existing normalization methods scale counts using size factors that are sample specific but not taxa specific, which can result in over- or under-correction for some taxa.ResultsWe developed TaxaNorm, a novel normalization method based on a zero-inflated negative binomial model. This method assumes the effects of sequencing depth on mean and dispersion vary across taxa. Incorporating the zero-inflation part can better capture the nature of microbiome data. We also propose two corresponding diagnosis tests on the varying sequencing depth effect for validation. We find that TaxaNorm achieves comparable performance to existing methods in most simulation scenarios in downstream analysis and reaches a higher power for some cases. Specifically, it balances power and false discovery control well. When applying the method in a real dataset, TaxaNorm has improved performance when correcting technical bias.ConclusionTaxaNorm both sample- and taxon- specific bias by introducing an appropriate regression framework in the microbiome data, which aids in data interpretation and visualization. The ‘TaxaNorm’ R package is freely available through the CRAN repository https://CRAN.R-project.org/package=TaxaNorm and the source code can be downloaded at https://github.com/wangziyue57/TaxaNorm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.