Abstract

Construction of domain ontologies on the semantic web is a human and resource intensive process, efforts to reduce which are crucial for the Semantic Web to scale. We present a framework for automated taxonomy construction, that involves: (a) generation of a cluster hierarchy from a document corpus using statistical clustering and NLP techniques; (b) extraction of a topic hierarchy from this cluster hierarchy; and (c) assignment of labels to nodes in the topic hierarchy. Metrics for estimating topic hierarchy quality and parameters of an experimentation framework are identified. MEDLINE was the document corpus and MeSH thesaurus was the gold standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.