Abstract

The mechanism of the taxadiene synthase-catalyzed cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP, 7) to taxadiene (5) is proposed to proceed through a verticillen-12-yl carbocation intermediate (8) that undergoes an 11 --> 7 proton transfer leading to formation of the C ring. The substrate analogue 6-fluoroGGPP (17) was synthesized to elucidate the stereochemistry of the putative verticillenyl intermediate. It was expected that the inductive electron-withdrawing effect of the fluoro substituent would prevent the critical proton transfer to the Delta(7) double bond and thereby derail the cyclization at the bicyclic stage. Incubation of the fluoro analogue with recombinant taxadiene synthase yielded a mixture of three major and two minor fluoro diterpenes according to GC/MS analyses. The three major products were identified as the exocyclic, endocyclic, and 4(20)-methylene 7-fluoroverticillenes, i.e., Delta(3,7,12 (18)), Delta(3,7,12), and Delta(4(20),7,11) isomers (22, 23, and 24) on the basis of (1)H NMR analyses and comparisons with the parent bicyclic diterpenes. The H1beta, H11alpha (1S,11R) configurations at the bridgehead positions of 22 were established by means of NOE experiments and CD spectra. The absolute configuration of (+)-verticillol (4) was revised after the anomalous dispersion X-ray analysis of (+)-verticillol p-iodobenzoate. Of particular note, all absolute configurations of verticillane diterpenes in the literature should be reversed. This work affords compelling evidence supporting the H11alpha (11R) stereochemistry of the verticillen-12-yl(+) ion intermediate in the taxadiene synthase-catalyzed reaction and illustrates the capability of vinyl fluoro analogues to intercept complex cyclization cascades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.