Abstract
This paper studies tax evasion at the top of the U.S. income distribution using IRS micro-data from (i) random audits, (ii) targeted enforcement activities, and (iii) operational audits. Drawing on this unique combination of data, we demonstrate empirically that random audits underestimate tax evasion at the top of the income distribution. Specifically, random audits do not capture most tax evasion through offshore accounts and pass-through businesses, both of which are quantitatively important at the top. We provide a theoretical explanation for this phenomenon, and we construct new estimates of the size and distribution of tax noncompliance in the United States. In our model, individuals can adopt a technology that would better conceal evasion at some fixed cost. Risk preferences and relatively high audit rates at the top drive the adoption of such sophisticated evasion technologies by high-income individuals. Consequently, random audits, which do not detect most sophisticated evasion, underestimate top tax evasion. After correcting for this bias, we find that unreported income as a fraction of true income rises from 7% in the bottom 50% to more than 20% in the top 1%, of which 6 percentage points correspond to undetected sophisticated evasion. Accounting for tax evasion increases the top 1% fiscal income share significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.