Abstract
We study in detail the relationship between the Tavis-Cummings Hamiltonian of quantum optics and a family of quasi-exactly solvable Schrodinger equations. The connection between them is established through the biconfluent Heun equation. We found that each invariant n-dimensional subspace of Tavis-Cummings Hamiltonian corresponds either to n potentials, each with one known solution, or to one potential with n known solutions. Among these Schrodinger potentials the quarkonium and the sextic oscillator appear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.