Abstract
UDP-galactopyranose mutase (UGM) is a key flavoenzyme involved in cell wall biosynthesis of a variety of pathogenic bacteria and hence, integral to their survival. It catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); interconversion of the galactose moieties six- and five-membered ring forms. We have synergistically applied both density functional theory (DFT)-cluster and ONIOM quantum mechanics/molecular mechanics (QM/MM) hybrid calculations to elucidate the mechanism of this important enzyme and to provide insight into its uncommon mechanism. It is shown that the flavin must initially be in its fully reduced form. Furthermore, it requires an N5(FAD)-H proton, which, through a series of tautomerizations, is transferred onto the ring oxygen of the substrate's Galp moiety to facilitate ring-opening with concomitant Schiff base formation. Conversely, Galf formation is achieved via a series of tautomerizations involving proton transfer from the galactose's -O4(Gal)H group ultimately onto the flavin's N5(FAD) center. With the DFT-cluster model, the overall rate-limiting step with a barrier of 120.0 kJ mol(-1) is the interconversion of two Galf-flavin tautomers: one containing a C4(FAD)-OH group and the other a tetrahedral protonated-N5(FAD) center. In contrast, in the QM/MM model a considerably more extensive chemical model was used that included all of the residues surrounding the active site, and modeled both their steric and electrostatic effects. In this approach, the overall rate-limiting step with a barrier of 99.2 kJ mol(-1) occurs during conformational rearrangement of the Schiff base linear galactose-flavin complex. This appears due to the lack of suitable functional groups to facilitate the rearrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.