Abstract

Pyridylethenyl-substituted N-confused porphyrins (NCPs) were synthesized, and their cis-trans isomerization was studied. Among four possible isomers, trans-3H and cis-2H types of structures, of which aromaticity and absorption/emission properties differ largely, were isolated. The cis-isomer was largely stabilized by the intramolecular hydrogen bonding between the pyrrolic-NH and the pyridinic-N in the vicinity. The thermal cis-trans isomerization proceeded even at 30 °C, which was significantly accelerated by the pyridine added to the system. The kinetic studies revealed that the isomerization reaction was second-order and the activation energy of the thermal isomerization from cis to trans isomer was ΔG0⧧cis→trans = 35.7 kcal/mol at 298 K, which is significantly smaller than that of Ni complex (42.3 kcal/mol). An intermolecular proton transfer induced cis-trans isomerization mechanism was proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.